Control of Macrosegregation in Medium-High Carbon Special Steel Billets and Blooms
定 價(jià):199 元
- 作者:Hanghang An
- 出版時(shí)間:2022/2/24
- ISBN:9787502491239
- 出 版 社:冶金工業(yè)出版社
- 中圖法分類:TF761
- 頁(yè)碼:
- 紙張:
- 版次:1
- 開(kāi)本:B5
目前中高碳特殊鋼方坯連鑄生產(chǎn)過(guò)程中普遍采用電磁攪拌技術(shù)及與輕壓下技術(shù)對(duì)控制宏觀偏析,兩種技術(shù)對(duì)宏觀偏析的影響機(jī)理不同且多場(chǎng)耦合下宏觀偏析存在更為復(fù)雜的變化規(guī)律,導(dǎo)致核心工藝參數(shù)確定存在較大技術(shù)難點(diǎn)。基于此,本書基于中高碳鋼方坯連鑄凝固過(guò)程溫度場(chǎng)、凝固組織及宏觀偏析的數(shù)值模擬的理論分析、結(jié)合實(shí)驗(yàn)室實(shí)驗(yàn)及工業(yè)試驗(yàn)綜合系統(tǒng)研究,提出了中高碳特殊鋼小方坯采用強(qiáng)攪拌的“結(jié)晶器電磁攪拌+末端電磁攪拌”復(fù)合電磁攪拌技術(shù)、大方坯采用“結(jié)晶器電磁攪拌+末端電磁攪拌+大壓下量輕壓下”的技術(shù)路線,為中高碳特殊鋼方坯宏觀偏析控制技術(shù)體系的構(gòu)建提供了理論與實(shí)踐指導(dǎo)。
安航航,1984年9月生,北京科技大學(xué)鋼鐵共性技術(shù)協(xié)同創(chuàng)新中心助理研究員。研究方向包括特殊鋼鑄坯內(nèi)部質(zhì)量控制、連鑄過(guò)程多場(chǎng)耦合數(shù)值模擬、連鑄二級(jí)控制模型開(kāi)發(fā)以及基于數(shù)字化平臺(tái)的連鑄過(guò)程智能制造技術(shù)。近年來(lái)致力于高品質(zhì)特殊鋼均質(zhì)化冶金技術(shù)的基礎(chǔ)理論和工業(yè)應(yīng)用研究。作為主要參與人參與國(guó)家科技重大專項(xiàng)及工信部智能制造新模式項(xiàng)目2項(xiàng),參與并主持10余項(xiàng)與國(guó)內(nèi)主要特鋼公司合作的橫向課題。獲2020年度中國(guó)機(jī)械工業(yè)科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng)等5項(xiàng)省部級(jí)科技獎(jiǎng)勵(lì)。獲國(guó)家發(fā)明專利授權(quán)4項(xiàng),實(shí)用新型專利授權(quán)2項(xiàng),發(fā)表鋼鐵冶金相關(guān)學(xué)術(shù)論文30余篇,以第一通訊作者發(fā)表中英文SCIEI論文11篇,其中鋼鐵冶金學(xué)科國(guó)際五大學(xué)術(shù)期刊論文8篇。
Chapter 1 Heredity of Center Segregation in Bloom on Hot Rolled Bars1.1 Introduction1.2 Experimental Section1.2.1 Determination of continuous casting parameters1.2.2 Samples analysis1.3 Results and Discussions1.3.1 Solidification end of bloom1.3.2 Magnetic field characteristics of electromagnetic stirring1.3.4 Influencing factors of solidification structure and center segregation1.3.5 The heredity of center segregation in bloom on the heredity1.4 ConclusionReferencesChapter 2 Evolution of Solidification Law and Structure in Bloom2.1 Introduction2.2 Mathematical Models2.2.1 Thermophysical properties of material2.2.2 Heat transfer model2.2.3 Nucleation model2.2.4 Dendrite tip growth kinetics model2.2.5 Calculation procedure of CAFE model2.2.6 SDAS model2.3 Model Verification2.3.1 Validation of heat transfer model2.3.2 Validation of CAFE model2.3.3 Verification of SDAS model2.4 Results and Discussion2.4.1 Effect of CC process parameters on solidification behavior2.4.2 Effect of CC process parameters on solidification structure2.4.3 Effect of CC process parameters on SDAS2.4.4 Optimization of CC process parameters2.5 ConclusionReferencesChapter 3 Macrosegregation of High Carbon Steel Bloom with M-EMS3.1 Introduction3.2 Experimental Method3.3 Mathematical Models3.2.1 Basic assumption3.2.3 The fluid flow model3.2.4 Heat transfer model3.2.5 Solute transport model3.2.6 The electromagnetic model3.2.7 Model validation3.4 Result and Discussion3.4.1 Macrosegregation in the cross section of high carbon steel bloom3.4.2 Formation of negative segregation band in high carbon steel bloom3.4.3 Influencing factors of negative segregation band3.5 ConclusionReferencesChapter 4 Macro Segregation Control in Billet and Bloom By M+F-EMS4.1 Introduction4.2 Development and Application of Electromagnetic Torque Device4.2.1 Electromagnetic torque model with M-EMS4.2.2 Design of the electromagnetic torque device4.2.3 Investigation method4.2.4 Results and discussion4.3 Effects of Electromagnetic Stirring on Fluid Flow and Temperature Distribution4.3.1 Model description4.3.2 Results and discussion4.4 Industry Application4.4.1 Improvement of macro segregation in billet by M-EMS4.4.2 Reduction of center segregation in billet by M+F-EMS4.4.3 Control of center segregation in rectangular bloom by M+ F-EMS4.5 ConclusionsReferencesChapter 5 Control of Macro Segregation in Bloom By M+F-EMS and MSR5.1 Introduction5.2 Reducing Macro Segregation in High Carbon Steel Bloom by F-EMS and MSR5.2.1 Model description5.2.2 Determining of process parameters5.2.3 Model validation and application5.3 High-efficiency CC of High Carbon Steel Bloom by M+F-EMS and MSR5.3.1 Background5.3.2 Model description and validation5.3.4 Experiments5.3.5 Results and discussion5.4 Improvement of macro segregation in Bloom Using DSR5.4.1 Investigation work5.4.2 Determination of process parameters5.4.3 Optimization application5.4 ConclusionsReferences