新能源材料與器件導(dǎo)論=Introduction to New Energy Materials and Devices:英文
 
		
	
		
					 定  價(jià):198 元 
					
				 
				 
				  
				
				   
				 
				  
				
						
								
									當(dāng)前圖書已被 25 所學(xué)校薦購(gòu)過(guò)!
								
								
									查看明細(xì)
								 
							 
							
							
								
							
				 
	
				
					
						- 作者:吳宇平、朱玉松、(南非)特尼斯·范·雷  編著
 - 出版時(shí)間:2020/10/1
 
						- ISBN:9787122371843
 
						- 出 版 社:化學(xué)工業(yè)出版社
 
					
				  
  
		
				- 中圖法分類:TK01 
  - 頁(yè)碼:321
 - 紙張:
 - 版次:01
 - 開本:16開精
 
				
					 
					
			
				
  
   
 
	 
	 
	 
	
	
	
		
		《Introduction  to  New  Energy Materials  and  Devices》一書,全面系統(tǒng)地介紹太陽(yáng)能、氫能、生物質(zhì)能、核能、動(dòng)力電池、儲(chǔ)能和燃料電池等研究的基礎(chǔ)知識(shí)和最新進(jìn)展。以儲(chǔ)能和換能為順序,先系統(tǒng)介紹了目前電化學(xué)儲(chǔ)能系統(tǒng),如鋰離子電池、其他新型電池和超級(jí)電容器的工作機(jī)理、發(fā)展歷史和最新進(jìn)展;接著介紹了常見的換能系統(tǒng)如燃料電池、太陽(yáng)能電池、太陽(yáng)能制氫的研究現(xiàn)狀和未來(lái)趨勢(shì);最后簡(jiǎn)單介紹了生物質(zhì)能、核能和其他新能源的發(fā)展展望。本書深入淺出,每一章均從基礎(chǔ)知識(shí)講起,內(nèi)容涉及材料、物理、化學(xué)、電子、機(jī)械等多學(xué)科,知識(shí)體系涉及固體物理、電化學(xué)、材料科學(xué)與基礎(chǔ)、半導(dǎo)體物理與器件、薄膜技術(shù)與材料等。接著從基礎(chǔ)講到應(yīng)用,探討對(duì)應(yīng)儲(chǔ)能換能器件的組裝、存在的問(wèn)題和發(fā)展方向。該書既避免枯燥的機(jī)理介紹,又能使讀者在對(duì)儲(chǔ)能換能器件的深入了解中加深對(duì)機(jī)理的了解。
本書采用全英文編寫,不僅適合于高等院校與新能源領(lǐng)域相關(guān)的本科生、研究生的雙語(yǔ)教材或參考書,也適合于相關(guān)的科研與管理工作者入門參考之一。
		
	
吳宇平,南京工業(yè)大學(xué)能源科學(xué)與工程學(xué)院院長(zhǎng),教授,博導(dǎo)。國(guó)家自然科學(xué)基金“杰出青年基金”獲得者(2015),第十三批中組部“國(guó)家千人計(jì)劃” 創(chuàng)業(yè)人才項(xiàng)目入選者(2016),江蘇省“雙創(chuàng)計(jì)劃”人才(2017),連續(xù)三年(2015-2017)入選全球高被引學(xué)者名單,入選全球具影響力的科研菁英名單(2015)。主要研究方向?yàn)樾滦蛢?chǔ)能體系及其關(guān)鍵材料的研究和開發(fā)。目前主持完成國(guó)家自然科學(xué)基金項(xiàng)目4項(xiàng)、科技部國(guó)際合作項(xiàng)目1項(xiàng),參加完成國(guó)家科技部“973”項(xiàng)目1項(xiàng)。目前主持國(guó)家杰出青年基金1項(xiàng)、國(guó)家自然科學(xué)基金委-廣東省聯(lián)合重點(diǎn)項(xiàng)目1項(xiàng),并參與了國(guó)家重點(diǎn)研發(fā)計(jì)劃“基于材料基因組技術(shù)的全固態(tài)鋰電池及其關(guān)鍵材料研發(fā)”項(xiàng)目。已在國(guó)際專業(yè)學(xué)術(shù)期刊如Chem. Soc. Rev., Angew. Chem. Int. Ed.、Prog. Mater. Sci.、Energy Environ. Sci.、Adv. Mater.、Adv. Energy Mater.、Nano Lett.發(fā)表學(xué)術(shù)論文300余篇,37篇被列入ESI本領(lǐng)域高引用文章,被SCI核心期刊引用超過(guò)1萬(wàn)余次,H-指數(shù)58;授權(quán)發(fā)明專利35項(xiàng);編寫了有關(guān)能源儲(chǔ)存系統(tǒng)與材料的中英文著作6部,全球銷量超過(guò)5萬(wàn)冊(cè);多次受邀到國(guó)外訪問(wèn)和/或作邀請(qǐng)報(bào)告和演講;多次參加美國(guó)、澳大利亞、韓國(guó)、南非等國(guó)家的博士論文和科研項(xiàng)目進(jìn)行評(píng)審;并兼任多個(gè)國(guó)際會(huì)議的國(guó)際顧問(wèn)。
Chapter 1 Introduction	001
1.1 Brief introduction to world energy consumption	001
1.2 History of various new energy materials and devices	006
1.2.1 Batteries	006
1.2.2 Supercapacitors	008
1.2.3 Fuel cells	009
1.2.4 Solar cells	010
1.2.5 Biomass energy	012
1.2.6 Nuclear energy	012
1.3 Principles of various new energy materials and devices	013
1.3.1 Principles of metal-ion secondary batteries	013
1.3.2 Principles of other secondary batteries	014
1.3.3 Principles of fuel cells  	015
1.3.4 Principles of supercapacitors	017
1.3.5 Principles of solar cells	017
1.3.6 Principles of solar-to-hydrogen	018
1.3.7 Principles of biomass energy	019
1.3.8 Principles of nuclear energy	019
1.4 Some requirements for various new energy materials and devices	020
1.4.1 Requirements for lithium secondary batteries	020
1.4.2 Requirements of other secondary batteries	020
1.4.3 Requirements of fuel cells	022
1.4.4 Requirements of supercapacitors	023
1.4.5 Requirements of solar cells	023
1.4.6 Requirements of solar-to-hydrogen conversion	023
1.4.7 Requirements of biomass energy	024
1.4.8 Requirements of nuclear energy	024
1.5 About this book	024
References	025
Chapter 2 Lithium secondary batteries	028
2.1 Positive electrode materials for LIBs	029
2.1.1 LiCoO2-based positive electrode materials	030
2.1.2 LiNiO2-based positive electrode materials	031
2.1.3 LiMn2O4-based positive electrode materials	032
2.1.4 LiFePO4-based positive electrode materials	034
2.1.5 LiNi1-x-yCoxMnyO2 (NCM) positive electrode materials	034
2.2 Negative electrode materials for LIBs	036
2.2.1 Graphite	  036
2.2.2 Si-based materials	038
2.2.3 Titanium oxides	038
2.3 Electrolytes for LIBs	039
2.3.1 Liquid electrolytes	040
2.3.2 Solid electrolytes	043
2.4 Separators for LIBs	045
2.4.1 The functions and characteristics of the separator	045
2.4.2 Separator types	046
2.4.3 Separator preparation methods	047
2.5 Aqueous rechargeable lithium batteries	049
2.5.1 First generation aqueous rechargeable lithium batteries	050
2.5.2 Second generation aqueous rechargeable lithium batteries	051
2.5.3 Third generation aqueous rechargeable lithium batteries	052
2.5.4 Side-reactions with H2O and O2 in an electrolyte	   053
2.5.5 Water-in-salt aqueous rechargeable lithium batteries	054
2.6 Li-sulfur batteries	054
2.6.1 Principles of Li-sulfur batteries	055
2.6.2 Sulfur positive electrodes	056
2.6.3 Electrolytes for Li-sulfur batteries	056
2.7 Li-air batteries	057
2.7.1 Water-based lithium-air batteries	059
2.7.2 Organic lithium-air batteries	059
2.7.3 Water-organic two-liquid system lithium-air batteries	059
2.7.4 Solid-state lithium-air batteries	060
2.7.5 Ionic liquid system lithium-air batteries	060
References	060
Chapter 3 Other secondary batteries	065
3.1 Redox flow batteries	065
3.1.1 Polysulfide bromide battery (PSB)	068
3.1.2 ZNBR battery	068
3.1.3 Vanadium redox flow battery (VFB)	069
3.2 Na-S battery	070
3.2.1 Principle of operation	070
3.2.2 The configuration of the NAS battery	072
3.2.3 NAS battery features	073
3.2.4 Composition and crystalline structure of b-alumina	074
3.2.5 Challenges of NAS batteries	075
3.3 Other metal-air batteries	075
References	079
Chapter 4 Fuel cells	082
4.1 Introduction	082
4.1.1 Some history	082
4.1.2 Ordinary fuel cells	083
4.1.3 Advantages and disadvantages of fuel cells	084
4.1.4 Types of fuel cells	087
4.2 Fuel cell thermodynamics	095
4.2.1 How a basic fuel cell works	095
4.2.2 Fuel cell performance	095
4.2.3 Fuel cell internal energy	097
4.2.4 First law of thermodynamics	097
4.2.5 The second law of thermodynamics	098
4.2.6 What are thermodynamic potential and enthalpy	098
4.2.7 The calculation of reaction enthalpy	100
4.2.8 The Gibbs free energy	100
4.2.9 Factors influencing reversible voltage and calculation	101
4.2.10 Ideal fuel cell efficiency and actual fuel cell efficiency	103
4.3 Fuel cell reaction kinetics	104
4.3.1 Current basic physical quantity calculation	104
4.3.2 Calculation of reaction rate	105
4.3.3 Tiffier equation	105
4.3.4 Responsive charge transfer	106
4.3.5 Charge transfer can cause voltage loss	107
4.3.6 The physical significance of conductivity	108
4.4 Fuel cell systems	108
4.4.1 General description of fuel cell systems	108
4.4.2 Fuel cell stack	109
4.4.3 Fuel transfer processing subsystem	110
4.4.4 Power transmission subsystem	111
4.4.5 Fuel cell design levels: the unit cell, the stack, and the system	112
4.5 Fuel cell based power systems	115
4.5.1 Hybrid fuel cell power system	115
4.5.2 Standalone fuel cell power system	116
4.5.3 Grid connected fuel cell power systems	116
4.6 Applications of fuel cells	117
4.6.1 Fuel cell vehicles	117
4.6.2 Telecommunications	118
4.6.3 Underwater vehicles	118
4.6.4 Future targets	118
4.7 Conclusion	 119
References	119
Chapter 5 Supercapacitors	123
5.1 Introduction	123
5.2 Charge storage mechanism of supercapacitors	124
5.2.1 Electrochemical double-layer capacitors	124
5.2.2 Pseudocapacitors	127
5.2.3 Hybrid capacitor devices	128
5.3 Electrolytes	129
5.3.1 Aqueous electrolytes	131
5.3.2 Organic electrolytes	132
5.3.3 Ionic-liquid-based electrolytes	135
5.3.4 Solid- and quasi-solid-state electrolytes	135
5.4 Electrode materials for EDLCs	137
5.4.1 Carbon materials with different-scaled pores	137
5.4.2 Activated carbons (ACs)	138
5.4.3 Carbon nanotubes (CNTs)	139
5.4.4 Graphene-based electrode materials	140
5.4.5 Other carbon structures	142
5.5 Electrode materials for pseudocapacitors	143
5.5.1 Noble metal oxides	143
5.5.2 Transition metal oxides and hydroxides	145
5.5.3 Conducting polymers (CPs)	146
5.6 Hybrid capacitors	149
5.6.1 Acidic HCs	149
5.6.2 Alkaline HCs	149
5.6.3 Lithium-ion capacitors	150
5.6.4 Sodium-ion capacitors	151
5.7 Supercapacitor performance	153
5.8 Applications of supercapacitors	154
References	155
Chapter 6 Solar cells	159
6.1 Introduction	159
6.1.1 History	160
6.1.2 Classification of solar cells	162
6.1.3 Some PV parameters	163
6.1.4 Principles of solar cells	169
6.2 Silicon-based solar cells	176
6.2.1 Introduction to Si-based solar cells	176
6.2.2 Electrode materials	177
6.2.3 Basic processing and key materials	178
6.3 GaAs solar cells	181
6.3.1 History of the GaAs solar cell	181
6.3.2 Comparison with silicon-based solar cells	182
6.3.3 Other properties of GaAs materials	182
6.3.4 Performance of GaAs solar cells	183
6.4 Dye-sensitized solar cells	183
6.4.1 History of dye-sensitized solar cells	184
6.4.2 Principle of operation of a DSSC	185
6.4.3 Assembly of dye-sensitized solar cells	186
6.4.4 Main components of DSSCs	187
6.5 Organic /Polymer solar cells	187
6.5.1 History of the polymer solar cell	188
6.5.2 Principles of polymer solar cells	189
6.5.3 Advantages of polymer solar cells	189
6.5.4 Structure of a polymer solar cell	190
6.5.5 Key materials for polymer solar cells	190
6.5.6 Development of polymer solar cells	191
6.6 Perovskite solar cells	192
6.6.1 Perovskite solar cell history	192
6.6.2 Principles of perovskite solar cells	192
6.6.3 Key materials for perovskite solar cells	192
6.7 Solar power in China	193
References	193
Chapter 7 Solar-to-Hydrogen	199
7.1 Hydrogen energy	199
7.2 Hydrogen production from solar radiation	200
7.3 Direct solar thermal hydrogen generation	201
7.4 Concentrated solar thermochemical hydrogen production	203
7.4.1 Thermodynamics of solar thermochemical processes	203
7.4.2 Thermochemical processes	205
7.5  Solar photochemical hydrogen production	209
7.6 Photocatalytic hydrogen production 	210
7.6.1 Principles of photocatalytic hydrogen generation	210
7.6.2 Key photocatalytic hydrogen generation processes 	211
7.6.3 Evaluating photocatalytic water splitting systems	211
7.6.4 UV photocatalysts for water splitting	212
7.6.5 Visible light photocatalysts for H2 production 	214
7.6.6 Main challenges and opportunities	222
7.7 Photobiological hydrogen generation	223
7.7.1 Biological hydrogen production processes	223
7.7.2 Microbiology	227
7.7.3 Key enzymes	227
7.7.4 Genetic modification of microorganisms	228
7.7.5 Theoretical considerations	228
7.7.6 Energy analysis and purification of hydrogen	229
7.8 Solar-hydrogen energy systems	230
References	231
Chapter 8 Biomass energy	234
8.1 Introduction of biomass energy	234
8.1.1 Definition and features	235
8.1.2 Main resource categories	235
8.1.3 Conversion technologies	236
8.1.4 The risks and rewards of energy from biomass	237
8.2 Biofuel characteristics	238
8.3 Bioethanol	239
8.3.1 Biomass resources	240
8.3.2 Detailed process technology	242
8.4 Biodiesel	247
8.4.1 Synthesis technology	248
8.4.2 Global biodiesel status	248
8.5 Gaseous biomass energy production	249
8.5.1 Biogas	249
8.5.2 Biomass gasification	251
8.6 Biomass power generation (BPG)	252
8.6.1 BPG in China	253
8.6.2 BPG in other countries	254
8.7 Outlook	255
References	256
Chapter 9 Nuclear energy	260
9.1 Introduction	260
9.2 What is nuclear energy	261
9.3 The physical basis of a nuclear reactor	263
9.3.1 The nucleus and nuclear energy	264
9.3.2 Radioactivity	265
9.3.3 Types and patterns of decay	265
9.3.4 Nuclear reactions	266
9.4 Nuclear electric power generation	266
9.5 Nuclear reactor types and raw materials	269
9.5.1 Nuclear reactor classification	269
9.5.2 Pressurized water reactor	270
9.5.3 Boiling water reactor	270
9.5.4 Heavy water reactor	271
9.5.5 Graphite reactor	271
9.6 Power generation principles	272
9.6.1 Advantages	274
9.6.2 Disadvantages	274
9.7 Nuclear resources	275
9.7.1 Marine nuclear resources	275
9.7.2 The nuclear resources of the moon	276
9.8 Nuclear safety	276
9.9 Nuclear energy development in China	278
References	281
Chapter 10 Other energy	285
10.1 Introduction	285
10.2 Wind energy	286
10.2.1 Development of wind energy	286
10.2.2 Utilization of wind energy	290
10.2.3 Wind turbines	292
10.2.4 The global wind energy situation	294
10.3 Geothermal energy	297
10.3.1 History of geothermal energy	298
10.3.2 Types of geothermal energy	299
10.3.3 Resources	300
10.3.4 Application scenarios of geothermal energy	301
10.3.5 Challenges of geothermal energy	302
10.4 Marine energy	303
10.4.1 Characteristics of marine energy	304
10.4.2 Forms of marine energy	305
10.4.3 Use patterns for electricity generation	306
10.4.4 Installed capacity of ocean energy	307
10.4.5 Challenges of ocean energy	308
10.4.6 Prospect forecast of ocean energy	309
10.5 Conclusion	310
References	310
Index	313