Contents I Lebesgue Integration for Functions of a Single Real Variable 1 0 Preliminaries on Sets, Mappings, and Relations 3 UnionsandIntersectionsofSets ............................. 3 Mappings Between Sets............................. 4 Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma . . . . . . . . . . 5 1 The Real Numbers: Sets, Sequences, and Functions 7 1.1 The Field, Positivity, and Completeness Axioms . . . . . . . . . . . . . . . . . 7 1.2 TheNaturalandRationalNumbers ........................ 11
4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of FiniteMeasure.................................... 71 4.3 The Lebesgue Integral of a Measurable Nonnegative Function . . . . . . . . 79 4.4 TheGeneralLebesgueIntegral .......................... 85
4.5 Countable Additivity and Continuity of Integration . . . . . . . . . . . . . . . 90 4.6 Uniform Integrability: The Vitali Convergence Theorem . . . . . . . . . . . . 92 5 Lebesgue Integration: Further Topics 97 5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem 97 5.2 ConvergenceinMeasure .............................. 99
5.3 Characterizations of Riemann and Lebesgue Integrability . . . . . . . . . . . 102 6 Differentiation and Integration 107 6.1 ContinuityofMonotoneFunctions ........................ 108
14 Duality for Normed Linear Spaces 271 14.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies . . . 271 14.2TheHahn-BanachTheorem ............................ 277
16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators . . . 329 III Measure and Integration: General Theory 335 17 General Measure Spaces: Their Properties and Construction 337 17.1MeasuresandMeasurableSets........................... 337
17.2 Signed Measures: The Hahn and Jordan Decompositions . . . . . . . . . . . 342 17.3 The Carath′346 eodory Measure Induced by an Outer Measure . . . . . . . . . . . 17.4TheConstructionofOuterMeasures ....................... 349
17.5 The Carath′eodory-Hahn Theorem: The Extension of a Premeasure to a Measure ....................................... 352 18 Integration Over General Measure Spaces 359 18.1MeasurableFunctions................................ 359
18.5 The Nikodym Metric Space: The Vitali–Hahn–Saks Theorem . . . . . . . . . 388 19 General LP Spaces: Completeness, Duality, and Weak Convergence 394 19.1 The Completeness of Lp.X, μ., 1 ≤p ≤∞ ................... 394
19.2 The Riesz Representation Theorem for the Dual of Lp.X, μ., 1 ≤p ≤∞ . . 399 19.3 The Kantorovitch Representation Theorem for the Dual of L∞.X, μ. .... 404 19.4 Weak Sequential Compactness in Lp.X, μ., 1
19.5 Weak Sequential Compactness in L1.X, μ. : The Dunford-Pettis Theorem . .. 409 20 The Construction of Particular Measures 414 20.1 Product Measures: The Theorems of Fubini and Tonelli . . . . . . . . . . . . 414 20.2 Lebesgue Measure on Euclidean Space Rn .................... 424 20.3 Cumulative Distribution Functions and Borel Measures on R ......... 437 20.4 Caratheodory Outer Measures and Hausdor ′ff Measures on a Metric Space 441 21 Measure and Topology 446 21.1LocallyCompactTopologicalSpaces ....................... 447 21.2 SeparatingSetsandExtendingFunctions. . . . . . . . . . . . . . . . . . . . . 452 21.3TheConstructionofRadonMeasures....................... 454 21.4 The Representation of Positive Linear Functionals on Cc.X.:The Riesz-MarkovTheorem .................... 457 21.5 The Riesz Representation Theorem for the Dual of C.X. ........... 462 21.6 RegularityPropertiesofBaireMeasures . . . . . . . . . . . . . . . . . . . . . 470 22 Invariant Measures 477 22.1 Topological Groups: The General Linear Group . . . . . . . . . . . . . . . . 477 22.2Kakutani’sFixedPointTheorem ......................... 480
22.3 Invariant Borel Measures on Compact Groups: von Neumann’s Theorem . . 485 22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov Theorem .............. 488 Bibliography 495