多智能體系統(tǒng)可以看作由多個(gè)具有自主決策能力的軟件智能體組成,各智能體之間會(huì)直接或間接地相互作用和影響。通?梢园讯嘀悄荏w系統(tǒng)分為兩大類:合作式多智能體系統(tǒng)和非合作式多智能體系統(tǒng),前者研究的核心問題是各智能體如何利用有限的局部信息,通過自主學(xué)習(xí)有效協(xié)作達(dá)到最優(yōu)的共同目標(biāo);而后者一個(gè)重要問題是如何采用有效激勵(lì)機(jī)制,促使各智能體主動(dòng)協(xié)調(diào)合作,從而最大化系統(tǒng)整體性能。
		
	
	1 Introduction
	1.1 Overview of the Chapters
	1.2 Guide to the Book
	References
	2 Background and Previous Work
	2.1 Background
	2.1.1 Single-Shot Normal-Form Game
	2.1.2 Repeated Games
	2.2 Cooperative Multiagent Systems
	2.2.1 Achieving Nash Equilibrium
	2.2.2 Achieving Fairness
	2.2.3 Achieving Social Optimality
	2.3 Competitive Multiagent Systems
	2.3.1 Achieving Nash Equilibrium
	2.3.2 Maximizing Individual Benefits
	2.3.3 Achieving Pareto-Optimality
	References
	3 Fairness in Cooperative Multiagent Systems
	3.1 An Adaptive Periodic Strategy for Achieving Fairness
	3.1.1 Motivation
	3.1.2 Problem Specification
	3.1.3 An Adaptive Periodic Strategy
	3.1.4 Properties of the Adaptive Strategy
	3.1.5 Experimental Evaluations
	3.2 Game-Theoretic Fairness Models
	3.2.1 Incorporating Fairness into Agent Interactions
	Modeled as Two-Player Normal-Form Games
	3.2.2 Incorporating Fairness into Infinitely Repeated
	Games with Conflicting Interests for Conflict Elimination
	References
	4 Social Optimality in Cooperative Multiagent Systems
	4.1 Reinforcement Social Learning of Coordination
	in Cooperative Games
	4.1.1 Social Learning Framework
	4.1.2 Experimental Evaluations
	4.2 Reinforcement Social Learning of Coordination
	in General-Sum Games
	4.2.1 Social Learning Framework
	4.2.2 Analysis of the Learning Performance Under
	the Social Learning Framework
	4.2.3 Experimental Evaluations
	4.3 Achieving Socially Optimal Allocations Through Negotiation
	4.3.1 Multiagent Resource Allocation Problem
	Through Negotiation
	4.3.2 The APSOPA Protocol to Reach Socially Optimal
	Allocation
	4.3.3 Convergence of APSOPA to Socially Optimal Allocation..
	4.3.4 Experimental Evaluation
	References
	5 Individual Rationality in Competitive Multiagent Systems
	5.1 Introduction
	5.2 Negotiation Model
	5.3 ABiNeS: An Adaptive Bilateral Negotiating Strategy
	5.3.1 Acceptance-Threshold (AT) Component
	5.3.2 Next-Bid (NB) Component
	5.3.3 Acceptance-Condition (AC) Component
	5.3.4 Termination-Condition (TC) Component
	5.4 Experimental Simulations and Evaluations
	5.4.1 Experimental Settings
	5.4.2 Experimental Results and Analysis: Efficiency
	5.4.3 Detailed Analysis of ABiNeS Strategy
	5.4.4 The Empirical Game-Theoretic Analysis: Robustness
	5.5 Conclusion
	References
	6 Social Optimality in Competitive Multiagent Systems
	6.1 Achieving Socially Optimal Solutions in the Context
	of Infinitely Repeated Games
	6.1.1 Learning Environment and Goal
	6.1.2 TaFSO: A Learning Approach Toward SOSNE Outcomes:
	6.1.3 Experimental Simulations
	6.2 Achieving Socially Optimal Solutions in the Social
	Learning Framework
	6.2.1 Social Learning Environment and Goal
	6.2.2 Learning Framework
	6.2.3 Experimental Simulations
	References
	7 Conclusion
	Reference
	A The 57 Structurally Distinct Games